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Complement the EU Emissions Trading Scheme? 

 

 

Abstract:  

In virtually all EU Member States, the EU Emissions Trading Scheme (EU ETS) is 

complemented by support schemes for electricity generation from renewable energy sources 

(RES-E). This policy mix has been subject to strong criticism. It is mainly argued that RES-E 

schemes contribute nothing to emissions reduction and undermine the cost-effectiveness of the 

EU ETS. Consequently, many scholars suggest the abolition of RES-E schemes. However, this 

conclusion rests on quite narrow and unrealistic assumptions about the design and performance 

of markets and policies. This article provides a systematic and comprehensive review and 

discussion of possible rationales for combining the EU ETS with RES-E support schemes. The 

first and most important reason may be restrictions to technology development and adoption. 

These may be attributed to the failure of markets as well as policies, and more generally to the 

path dependency in socio-technical systems. Under these conditions, RES-E schemes are 

required to reach sufficient levels of technology development. In addition, it is highlighted that in 

contrast to the EU ETS RES-E support schemes may provide benefits beyond mitigating climate 

change.  
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1 Introduction 

To combat climate change, the European Union (EU) has agreed on two ambitious targets for 

2020 (European Commission, 2008b). Firstly, greenhouse gas emissions shall be reduced by 20 

percent compared to 1990 emissions levels. Secondly, the share of renewable energy sources in 

total energy consumption shall be increased to 20 percent. The EU strategy to attain these targets 

rests on a portfolio of policy instruments, out of which two measures are outstanding. The EU 

Emissions Trading Scheme (EU ETS) sets a cap on CO2 emissions from the energy sector and 

certain energy-intensive industry sectors (European Parliament/Council of the European Union, 

2003). Additionally, the EU has adopted a framework to promote electricity generation from 

renewable energy sources (RES-E) (European Parliament/Council of the European 

Communities, 2001). Within this framework, all EU Member States have now implemented RES-

E support schemes, including feed-in tariffs, quotas with tradable green certificates, tender 

systems or tax incentives (European Commission, 2008a). All of these schemes subsidize the 

RES-E generation in one way or another. In recent years, however, this policy mix has been 

subject to growing criticism. This paper aims to clarify whether this criticism disqualifies the use 

of RES-E support schemes in general – or whether there are conditions under which a policy mix 

is nevertheless required. 

The major criticism raised with respect to RES-E support schemes is that they do not contribute 

anything to CO2 emissions reduction in the presence of the EU ETS. Instead, the promotion of 

RES-E is found to impair the cost-effectiveness of the EU ETS. Critical debates start from the 

observation of interactions between electricity and allowance markets (see, e.g., Böhringer and 

Rosendahl, 2010; Frondel et al., 2008; 2010; Jensen and Skytte, 2003; Morthorst, 2001; Pethig and 

Wittlich, 2009; Sinn, 2011; Unger and Ahlgren, 2005; Weimann, 2008). RES-E support schemes 

result in renewable energy sources substituting fossil fuels for electricity generation. 

Consequently, electricity generators emit less CO2. The electricity sector’s demand for allowances 

declines and brings about a drop in the allowance price. Emitters in other EU ETS sectors take 

advantage of this price reduction, buy additional allowances and increase their emissions. The 

overall level of CO2 emissions is fixed at the EU ETS cap. Thus, RES-E support schemes only 

result in a shift of emissions across sectors. At the same time, the cost of achieving the emissions 

cap is increased. The electricity sector abates too much and too costly compared to other EU 

ETS sectors, which do not employ relatively cheap emission reduction options. Based on these 

considerations, it is straightforward that some authors recommend that reasonable climate policy 

should rely primarily on the EU ETS – and that distorting RES-E support schemes should be 

abolished (see, e.g., Frondel et al., 2008; Sinn, 2011). 
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However, the conclusion to renounce RES-E support schemes rests on certain assumptions: 

Firstly, and most importantly, there is efficient competition of different technologies for 

electricity generation as soon as the EU ETS is established. This implies that (1) markets provide 

optimal levels of technology development and adoption, (2) existing policy instruments apart 

from RES-E support schemes do not distort the choice of technologies, and (3) the society can 

continuously compose an optimal technology mix on the basis of marginal generation costs. 

Secondly, RES-E support schemes are exclusively meant to combat climate change, just as the 

EU ETS.  

To derive suitable policy recommendations, it has to be revised whether these assumptions 

actually reflect reality. There are many studies which use a broader and more applied evaluation 

framework (see, e.g., del Rio, 2007; 2009; Fischer and Preonas, 2010; Kalkuhl et al., 2011; 

Matthes, 2010; Sijm, 2005; see, e.g., Sorrell and Sijm, 2003). They emphasize that once these 

assumptions are relaxed, there may be rationales for combining the EU ETS with RES-E support 

schemes – the criticism raised above notwithstanding. Within these frameworks, the conclusion 

to abolish RES-E support schemes in the presence of the EU ETS may be less clear-cut – or 

even wrong. 

This paper provides a systematic and comprehensive review and discussion of possible rationales 

for combining the EU ETS with RES-E support schemes. It focuses on RES-E policies which 

provide direct subsidies to the generation of electricity from renewable energy sources. It 

addresses the question under which conditions such policy is a useful complement to the EU 

ETS. The paper is not meant to discuss the details of designing RES-E policies. Thus, it will not 

reflect on optimal support mechanisms (feed-in tariffs vs. quotas with tradable green certificates) 

or the optimal level and differentiation of such subsidies. 

The subsequent sections now dismantle the assumptions underlying those studies which are 

critical of RES-E support schemes step by step. This process helps to understand possible 

rationales for implementing RES-E support schemes in addition to the EU ETS. Section 2 

illustrates possible restrictions to technology development and adoption. It will shed particular 

light on the implications of market failures, policy failures and path dependencies. Section 3 

highlights possible benefits of RES-E support schemes beyond mitigating climate change. 

Section 4 summarizes and concludes. 
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2 Restrictions to Technology Development and Adoption 

2.1 Market Failure 

To argue in favour of or against RES-E support schemes, a first decisive question is whether 

climate change is only attributed to negative externalities related to CO2 emissions – or whether 

there are further market failures which may impede a proper choice of energy and abatement 

technologies. In other words: Given the EU ETS perfectly internalizes the external costs of CO2 

emissions, do individually rational decisions of market participants then result in an efficient level 

of technological innovation and diffusion of RES-E technologies in the long term? Economic 

theory suggests that if negative externalities are coupled with additional technology market 

failures, the EU ETS has to be supplemented by some kind of RES-E policy (for overviews of 

rationales for using a policy mix, see Bennear and Stavins, 2007; Lehmann, 2011). 

The classical market failures associated with technological development are positive externalities 

of knowledge generation. New knowledge may be created through invention and innovation as 

well as the diffusion of new technologies (Schumpeter, 1942). The levels of invention and 

innovation are driven primarily by firms’ investments in research and development (R&D). 

Knowledge advances during diffusion strongly depend on the extent of technology adoption and 

related learning effects. Throughout the production process, experiences are made which allow 

decreasing the unit cost of a product (Arrow, 1962a, p. 155). Such learning effects have been 

found to be significant for RES-E technologies (see, e.g., Christiansson, 1995; IEA, 2000; Isoard 

and Soria, 2001; Kouvaritakis et al., 2000; Neij, 1997). 

New knowledge generated through innovation or diffusion by one firm may “spill over” to other 

firms (Arrow, 1962a, p. 168). These firms may benefit from this knowledge without having 

invested in R&D or technology adoption and without compensating the innovator or adopter. 

Thus, a knowledge spillover in fact represents a positive externality. Despite patents, which are 

meant to protect intellectual property rights, firms are usually unable to appropriate the complete 

social returns of their knowledge (Neuhoff, 2005, p. 97). Their incentives to invest in knowledge 

generation are reduced to their private returns. This typically results in significant 

underinvestment in R&D and suboptimally low levels of technology adoption (Jaffe et al., 2005, 

p. 167).  

Spillovers may arise due to personnel movements and communication between firms, joint 

participation in meetings and conferences, or “reverse engineering” (Argote and Epple, 1990, p. 

923; Irwin and Klenow, 1994, p. 1205). There are numerous studies which empirically confirm 

the existence of spillovers related to R&D (see, e.g., Bernstein and Mohnen, 1998; Jaffe, 1986; 
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Mansfield, 1985; Margolis and Kammen, 1999). Likewise, spillover effects related to learning 

have been observed (see, e.g., Barrios and Strobl, 2004; Irwin and Klenow, 1994; Lester and 

McCabe, 1993; Lieberman, 1984; Zimmerman, 1982). These findings indicate that knowledge 

spillovers may also be an issue for RES-E technologies. However, there are hardly any empirical 

analyses available. Some studies provide an indication at least. The IEA (2000, p. 56) observes 

that learning effects for wind turbines are stronger in Germany than in Denmark. The IEA 

argues that knowledge spillovers may be one explanation of this difference. German 

manufacturers may have “imported” experience from Denmark. Hansen et al. (2003, p. 328) 

highlight that the Danish wind industry is dominated by four firms, which account for 90 percent 

of Denmark’s production of wind turbines and operate in an industrial cluster. They draw on the 

same pool of highly skilled labour and profit from the same public-sector facilities. Hansen et al. 

find it therefore reasonable to assume that learning spillovers between Danish firms are existent. 

If knowledge spillovers exist, the EU ETS, which is designed to correct for the externalities from 

CO2 emissions, is unlikely to set sufficient incentives to induce technological change. Grubb et al. 

(1995, p. 428) highlight that the effects of emission mitigation policies may be dominated by 

knowledge spillovers. They estimate that the benefits of stimulating R&D and technology 

diffusion directly may be up to seven times larger than the direct Pigovian benefits from initial 

emission reductions. Parry (1995) shows that firms subject to a Pigovian emissions tax may invest 

too little in R&D in the presence of knowledge spillovers. The optimal tax rate has to be higher 

than the Pigovian tax rate. However, this solution is only efficient if all emission-reducing 

investments carry the same potential for innovation. Otherwise, increasing the tax beyond the 

Pigovian level will result in undesirable distortions for emitters and technologies with little 

potential of technological advances (Grubb and Ulph, 2002, p. 94). In this case, an emissions 

policy should rather be supplemented by a more focused stimulation of innovation and diffusion 

to attain a dynamically efficient solution. 

Kverndokk and Rosendahl (2007), Fischer and Newell (2008) and Lehmann (2009) show that 

RES-E support schemes are justified in the presence of learning spillovers. In their models, the 

optimal policy mix encompasses an emissions policy set equal to the marginal damage from 

emissions and an output subsidy per unit of RES-E. Bläsi and Requate (2010) and Kalkuhl et al. 

(2011) adopt a more differentiated model of the energy sector. Apart from fossil-fuelled 

generators, they distinguish between operators and producers of RES-E plants. Learning is 

experienced by the latter only. They find that, in this case, the emissions policy should be 

complemented by an output subsidy to producers of RES-E technologies, e.g. per wind turbine 

produced. In turn, operators of RES-E plants do not receive any support. Bläsi and Requate 
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(2010) admit, however, that direct subsidies to technology producers may be ruled out by 

international competition and trade law. Under this restriction, an output subsidy to operators 

can be considered a second-best solution. A higher RES-E generation can usually only be realized 

by a higher production and installation of RES-E technologies. In this sense, promoting RES-E 

generation also fosters the output of RES-E technologies. Yet, the quantity of electricity 

generated does not solely depend on the technology employed. It may also be a function of other 

variables, such as weather and site characteristics. Therefore, the incentives set out by RES-E 

support schemes with respect to technology adoption may be distorted. Kalkuhl et al. (2011) find, 

however, that the corresponding welfare losses are small. Moreover, they show that RES-E 

schemes respond less sensitively to deviations from the optimal level than direct output subsidies 

to technology producers. 

It is sometimes argued that RES-E support schemes may also be a useful policy instrument to 

address R&D spillovers (see, e.g., Sorrell, 2003, p. 24; Sorrell and Sijm, 2003, p. 429). However, in 

this respect, a direct subsidy to R&D expenditures, rather than an output subsidy to RES-E 

generation, should clearly be preferred as a complement to the EU ETS (see, e.g., Fischer, 2008; 

Goulder and Schneider, 1999; Katsoulacos and Xepapadeas, 1996). Otherwise, a double 

distortion is produced. First of all, the link between RES-E generation and RES-E technology 

production is not perfectly straightforward, as has been pointed out above. Secondly, there is 

neither a direct relationship between output and R&D investments. Consequently, RES-E 

support schemes should only be considered where direct R&D schemes are ruled out. 

2.2 Policy Failure  

So far, market conditions have been addressed as a barrier to employing RES-E technologies. 

However, technology choices may also be distorted by policy choices of governments. Two types 

of distortion have to be distinguished. Firstly, governments may not take sufficient action to 

overcome existing market failures, i.e. they fail to reduce market distortions. Even though an 

efficient correction of these market failures would require other policy instruments in the first 

place, RES-E support schemes may be second-best in the presence of policy failure. Examples 

discussed in this section include the incomplete internalization of external costs from non-

renewable energy sources and the sluggish liberalization of the electricity market. Secondly, policy 

choices may also create new distortions. In particular, there may be subsidies to non-renewable 

energy sources and investment uncertainties produced by policies. Both types of distortion may 

contribute to the fact that electricity generators do not face the full economic costs of non-

renewable energy sources – or that the costs of RES-E are politically increased. Thus, the political 
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framework may constitute an “uneven playing field” which puts RES-E at a disadvantage 

(Neuhoff, 2005, p. 93).  

2.2.1 Incomplete Internalization of External Costs of Non-Renewable Energy Sources 

First of all, the external costs of greenhouse gas emissions from fossil-fuel combustion are not 

completely internalized. It is fair to assume that the EU ETS emissions cap has come out of a 

political negotiation process and not been set at an efficient level (Isoard and Soria, 2001, p. 631; 

Matthes, 2010, p. 24). From a strict economic perspective, an efficient emissions cap would result 

in an allowance price equal to the marginal damage of one ton of CO2. Marginal damage 

estimates are subject to substantial uncertainty. They may vary from 0 to 300 Euro per ton of 

CO2 (Downing et al., 2005). This range indicates nevertheless that marginal damages may be 

significantly higher than current allowances prices, which have not exceeded 20 Euro per ton of 

CO2 in 2010 (EEX, 2011). Moreover, the EU ETS incorporates yet another implicit subsidy 

which is related to the current process of allowance allocation. So far, existing and new fossil-fuel 

power plants receive allowances almost entirely free of charge (European Commission, 2008c, p. 

9). When technology choices for new power plants are made, fossil-fuel technologies then have 

an undue advantage over RES-E technologies, to which no allowances are allocated.1 Moreover, 

allocation free of charge results in windfall profits which particularly benefit large fossil-fuel 

electricity generators (Keppler and Cruciani, 2010; Sijm et al., 2006). In Germany, windfall profits 

were estimated to amount to 2.5 billion Euro in 2006 (UBA, 2008, p. 16).  

In addition, there are further external costs which are not (entirely) reflected in the price of non-

renewable energy sources. These include other environmental costs of fuel combustion, such as 

diseases caused by air pollution. External costs also arise in the process of fuel extraction and 

transportation, e.g. the ecological impacts associated with open cast mining for coal or oil spills 

resulting from tanker and offshore platform disasters. Nuclear energy technologies produce costs 

related to possible accidents and the final storage of nuclear wastes. These are typically not 

completely borne by operators, for example, due to relaxed liability rules (see, e.g., Heyes and 

Heyes, 2000). Moreover, there are also non-environmental externalities of non-renewable energy 

sources. The use of natural gas and oil imported from politically instable countries has a 

detrimental effect on the security of energy supply. This insecurity is a major rationale for 

 

1 Moreover, it has been shown that tradable permit schemes with allocation free of charge provide lower innovation 

incentives than tradable permit schemes with auctions or emissions taxes (see, e.g., Milliman and Prince, 1989). Thus, 

the development of innovative technologies, such as those for using renewable energy sources, is hampered. 
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engaging in wars for oil to safeguard fuel supply. Again, the costs of these wars are imposed on 

the entire society. 

These observations reveal that market prices of non-renewable energy sources do not reflect their 

true social costs. Consequently, market decisions cannot result in an efficient choice of 

technologies. If the internalization of external costs is incomplete, RES-E support schemes can 

serve as a second-best policy – as has been shown for externalities related to greenhouse gas 

emissions (Bläsi and Requate, 2007; Fischer, 2008). 

Obviously, the first-best solution would be to provide for an appropriate internalization of 

external costs. However, it is questionable whether a necessary modification of policy 

instruments would be politically feasible. For example, implementing an efficiently tight 

emissions cap for the EU ETS may produce a substantial burden for participating industry 

sectors. This may give rise to distributional and industry policy concerns and result in strong 

opposition against climate policy. Thus, even though the EU ETS is continuously praised by 

economists for minimizing the cost of emissions abatement, it is not necessarily the most suitable 

tool to overcome political and societal barriers to climate policy. Such barriers may delay or 

impede the implementation of a stricter policy instrument. Due to these political-economy 

considerations, it has to be doubted that the EU ETS alone is capable of stimulating a level of 

technological change which would be sufficient to reach ambitious mitigation targets in due time. 

In contrast, the targeted support of low-emission technologies, such as RES-E, may produce less 

political hurdles. It sets a positive incentive for abatement. In turn, the surcharge to fund the 

subsidy is hidden in electricity bills and often imposed primarily on private households with little 

lobbying power. 

The fact that the EU ETS emissions cap is necessarily the result of political negotiations, rather 

than of efficiency considerations, also sheds new light on a major criticism raised with respect to 

the policy mix: The argument that RES-E support schemes do not contribute anything to 

emissions reductions in the presence of the EU ETS has to be qualified. In Germany, for 

example, expected CO2 reductions from RES-E promotion have been considered by reducing the 

cap accordingly (Matthes, 2010, p. 33). In fact, it can be argued that RES-E support schemes 

have been a political precondition for implementing a tighter cap. By offering a subsidy, the 

government facilitates the attainment of an ambitious emissions target and thereby “buys” the 

agreement of stakeholders which have to reduce their emissions. 

Just as for CO2 externalities, it must be doubted that other environmental and non-environmental 

externalities of non-renewable fuels will ever be perfectly internalized. For example, the 

implementation of an appropriate tax or tariff on imported fossil fuels to increase the security of 
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energy supply is highly unlikely for political reasons – in theory it would have to be differentiated 

according to degree of uncertainty resulting from the political situation in the exporting country. 

If this is impossible, RES-E support may serve as a second-best policy (Hagem, 2010). 

2.2.2 Sluggish Liberalization of Electricity Markets 

Since 1996, the EU has attempted to liberalize the European electricity market. However, 

Member States have been sluggish in implementing the EU Directive. Consequently, electricity 

markets are still dominated by few large electricity utilities (Joskow, 2008). The impact of market 

power on technological change has been strongly debated. On the one hand, it is argued that 

investment in R&D may be larger under market power than in the case of a competitive market, 

e.g. because firms can realize economies of scale and have more financial resources available 

(Aghion and Howitt, 1992; Grossman and Helpman, 1991; Schumpeter, 1942). On the other 

hand, it has been pointed out that firms which do not face competition may not be forced to be 

efficient and to innovate (Arrow, 1962b; Nickell, 1996; Porter, 1990). Moreover, there are some 

fundamental problems of markets with limited competition. Firstly, dominant firms tend to 

invest mainly in incremental improvements of technologies that are currently in use rather than in 

fundamental technological change (Grubb, 1997, p. 162). This often results in process rather than 

product innovation (Unruh, 2000, p. 821). Secondly, firms having market power may impede the 

entry of new competitors, e.g. by price manipulations or – in a vertically integrated industry – by 

denying grid access (Neuhoff, 2005, p. 95). This may impair the installation of renewable energy 

plants as they are often operated by market entrants. Thirdly, market entry barriers imply that 

there are fewer operating firms investing in innovation, i.e. a reduced probability of a 

technological break-through (Geroski, 1990). Finally, a dominant market position may change the 

behaviour of firm managers providing for some “managerial slack” (Aghion et al., 1999; Geroski, 

1990). Instead, firms may invest significant resources in rent-seeking to protect its existing market 

position and generation structure. So overall, there are arguments why an insufficient 

liberalization of the EU electricity market, which impedes ample competition, may also 

compromise efficient technology choice. 

2.2.3 Direct Subsidies to Non-Renewable Energy Sources 

The use of non-renewable energy technologies has also been promoted by enormous direct 

subsidies. Most notable are policies subsidizing the production of fossil-fuels (for an overview, 

see Ellis, 2010). In Germany, for example, subsidies to hard coal mining are most noteworthy. 

They amounted to 2.285 billion Euros in 2006. Moreover, nuclear-based electricity generation 

still benefits from a remarkable amount of R&D subsidies (UBA, 2008). These subsidies reduce 
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the cost of non-renewable energy sources and make them inefficiently cheap. The first-best 

solution would again be to abolish the subsidies. However, this may not be possible due to 

opposition from affected mining companies, plant manufacturers and energy utilities. 

2.2.4 Policy-Induced Investment Uncertainties 

Finally, climate and energy policy introduces new drivers of uncertainty for investors in the 

electricity sector, in addition to classical market risks such as fuel prices. Policy measures typically 

follow an erratic process of political decision-making which is driven by a variety of short-term 

concerns and considerations. In Germany, this has been demonstrated recently by the 

government’s decision to shut down nuclear power plants as a response to the Fukushima 

accident. This decision was taken only few months after the same government had agreed on 

prolonging the operation periods of existing nuclear power plants. This example illustrates that it 

is impossible to predict the future stringency and design of climate and energy policy. The 

corresponding policy-induced uncertainty implies that investments in mitigating GHG emissions 

and developing new abatement technologies, such as those using RES-E, will remain at 

suboptimally low levels. 

Policy-induced uncertainties arise particularly in the context of the EU ETS. Its outstanding 

characteristic – in contrast to an emissions tax – is that it fixes the overall emissions cap for a 

certain period but not the emissions price. This results in two types of uncertainties for EU ETS 

participants. Firstly, there is inter-period uncertainty since the emissions cap is renegotiated after 

each trading period. Even though it is decreasing over time, the actual extent of the reduction is 

unclear and dependent on the political feasibility. As a consequence the level of the allowance 

price in future trading periods is unknown. Secondly, there is also intra-period uncertainty. Even 

though the cap was fixed for a couple of years, allowance prices have been extremely volatile in 

previous years of the EU ETS. This demonstrates that prices are also driven by other factors 

apart from the cap, such as available information on actual emissions or speculation (Alberola 

and Chevallier, 2009; Ellerman and Joskow, 2008; Hintermann, 2010). With these uncertainties, it 

is questionable whether the EU ETS can set appropriate long-term scarcity signals (Betz and 

Sato, 2006, p. 352; Kettner et al., 2010, p. 18). At best, it can serve as a clearing mechanism for 

marketable abatement options within the next 10 years approximately. Since investment and 

innovation cycles of energy technologies are way beyond this period, the EU ETS is unlikely to 

induce sufficient levels of development and deployment of innovative but not yet marketable 

low-carbon technologies, such as renewable energy sources (Matthes, 2010). 
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Moreover, risks produced by uncertain allowance prices under the EU ETS (and by uncertain 

climate and energy policy in general) aggravate existing barriers to financing RES-E investments 

via the capital market. Such barriers have various sources. Firstly, investors in RES-E 

technologies are often small and new market actors which can provide less security for loans than 

large producers and adopters of fossil-fuel technologies. In addition, they cannot rely on a long-

lived relationship with banks (Walz, 2005, p. 265). Secondly, the relative importance of the risk 

premium is higher for RES-E technologies. This is because these technologies are relatively more 

capital-intensive than fossil-fuel technologies. The cost of generating one kilowatt-hour depends 

primarily on investment costs and hardly on variable input costs, such as fuels. Since investors in 

liberalized electricity markets prefer the least capital-intensive technologies, investment in 

renewable technologies is suboptimal. Thirdly, transaction costs of risk-management instruments 

may be relatively high for small-scale renewable energy projects (Menanteau et al., 2003, p. 801; 

Neuhoff, 2005, p. 95).  

In the light of the uncertainties induced by the EU ETS, one may be tempted to plead for an 

fixed emissions tax instead. However, a tax can be considered as politically incompatible in the 

EU. The implementation of the EU ETS was the result of a lengthy political decision-making 

process. In the meantime, the necessary institutions and organizations have been established to 

administer the EU ETS. Overthrowing this system is unlikely to be politically feasible. In this 

case, RES-E support schemes are needed to reduce the political uncertainties surrounding RES-E 

investments and to stimulate sufficient levels of technology development and adoption.  

2.3 Path Dependency and Carbon Lock-in 

The welfare losses produced by market and policy failures are aggravated and perpetuated by the 

path dependency which characterizes technology choices in the electricity sector. Path 

dependency implies that the economics of future technology-related decisions depend crucially 

on previous decisions and investments (Arthur, 1989). As a consequence, suboptimal decisions 

taken today may lock the electricity sector into a high-emissions path for decades as changing to a 

lower-emission energy system may become prohibitively costly (Sorrell and Sijm, 2003, p. 430). 

This has been referred to as carbon lock-in (Unruh, 2000). Kalkuhl et al. (2011) demonstrate, for 

example, that the welfare losses from learning spillovers associated with RES-E technologies are 

significantly higher in the presence of lock-in effects. 

The path dependency in the electricity sector is attributed to a variety of causes. Firstly, there are 

increasing returns from technology adoption. Four types can be distinguished (Grubb, 1997, p. 

162; Unruh, 2000, p. 820): 
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• Scale economies, which arise because fixed costs are spread over an increasing production 

volume. 

• Learning economies (not spillovers), which imply that the production and use of technologies 

are optimized by experience gained over time (see also Section 2.1). 

• Adaptive expectations, which mean that the increasing adoption of a technology reduces the 

uncertainty about its quality, performance and permanence. 

• Network economies, which result from the fact that production processes are embedded into 

a set of specific infrastructures, supplier relationships and customer outlets, often 

characterized by interdependent technologies throughout the value chain. 

Increasing returns of technology adoption contribute to the fact that established fossil-fuel and 

nuclear technologies generate electricity cheaper than RES-E technologies. Moreover, increasing 

returns result in non-convex, S-shaped supply curves for energy technologies. These may imply 

multiple stable equilibriums in the supply market, and market forces alone may not be sufficient 

to reach the superior state with a higher share of RES-E (Bruckner and Edenhofer, 2009; 

Marschinski and Schmidt, 2009). 

A second source of path dependency are the large-scale and long-term investments which are 

necessary in the energy sector (Matthes, 2010, p. 16; Neuhoff, 2005, p. 98; Sorrell and Sijm, 2003, 

p. 430). They include investments in manufacturing plants (typical lifetime 10-30 years), power 

plants (30-50 years), buildings (20-200 years) and transport and transmission infrastructures (40-

200 years) (Grubb, 1997, p. 165). Many of the investments are irreversible, i.e. investment costs 

are sunk in economic terms. Within the lifespan of investments, firms making technology 

decisions will therefore compare only the operation and maintenance (O&M) costs of the 

technologies in use with the investment and O&M costs of emerging technologies. 

Thirdly, electricity is a very homogeneous good. That is, electricity outputs from different 

technologies are almost perfect substitutes. New RES-E technologies can only compete on price, 

not on “quality”, with fossil-fuel and nuclear technologies. This is a major difference to other 

sectors, like those for IT and telecommunication, where product differentiation plays an 

important role in the adoption of new technologies (Kalkuhl et al., 2011; Neuhoff, 2005, p. 98). 

Finally, technological path dependencies are reinforced by institutions which co-evolve with the 

technological systems – something which has been referred to as techno-institutional complex 

(Unruh, 2000). On the one hand, institutions are designed as a response to emerging 

technologies. On the other hand, they also shape the technology choices of economic actors. 
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These institutions are subject to path dependencies themselves. A variety of institutions may 

promote non-renewable energy technologies and put RES-E technologies at a disadvantage 

(Neuhoff, 2005, pp. 94-96; Unruh, 2000, pp. 822-824). Relevant private institutions include: 

• the procedures for network control, e.g. the design of network tariffs and the timing of 

transmissions allocation decisions  

• the mechanisms of industry and inter-industry coordination, most importantly industry 

standards like those of the International Organization for Standardization (ISO), 

• financing mechanisms, e.g. if investments are primarily funded by internal cash flows or loans 

from risk-averse financial institutions, 

• pro-fossil fuel lobbying by powerful networks, in which the fundamental interests of unions 

and industry associations often merge, 

• the generally stronger acceptance for technologies in place due to adaptive preferences, and 

an aversion against new technologies. 

Similarly, there are also publicly established institutions which reinforce the use of non-renewable 

energy technologies: 

• the type of utility regulation, 

• a framework of land use planning which favours centralized over decentralized solutions of 

energy supply 

• the permitting process for new power plants, which may impose relatively higher transaction 

costs on small-scale RES-E projects than on large-scale fossil-fuel investments, 

• the publicly (and possibly also privately) funded research and education system, which 

generates highly trained and specialized individuals and may even create entirely new 

academic disciplines. 

Path dependencies and carbon lock-in imply that the change from non-renewable electricity to 

RES-E generation cannot be captured by the classical marginal calculus dominating economic 

thinking. In fact, not only the fuel but an entire set of technological and institutional systems has 

to be replaced or modified. Due to the inertia of these systems, the transition process usually 

occurs very slowly, and may exceed the time horizon where emissions reductions are required. 
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Under such conditions, the market process is unlikely to unfold an efficient level of technology 

discovery and adoption (Matthes, 2010).2  

3 Multiple Policy Objectives 

So far it has been assumed that the EU ETS as well as RES-E support schemes are primarily 

meant to address climate change. While this holds true for the EU ETS, RES-E support schemes 

pursue a variety of additional policy objectives. The EU particularly highlights environmental 

protection in a broader sense, security of electricity supply and industry policy as further 

rationales behind RES-E support (European Parliament/Council of the European Communities, 

2001).  

As already pointed out in Section 2.2.1, the use of RES-E may also provide environmental 

benefits apart from GHG mitigation when replacing non-renewable generation. Most notably are 

the reduction of air pollution from fossil-fuel combustions, the mitigation of nuclear hazards and 

the conservation of non-renewable resources. For Germany, the Federal Ministry of the 

Environment estimates that renewable electricity generation has abated some 45,000 tons of 

sulphur dioxide emissions and roughly 13,000 tons of nitrogen oxide emissions in 2007 (BMU, 

2008, p. 18). In addition, the use of fossil fuels was reduced by 39.1 million tons of lignite, 14.2 

million tons of hard coal and 8.78 billion cubic metres of natural gas in 2007 (BMU, 2008, p. 

25).3 From an economic point of view, though, an assessment of these effects is complicated due 

to difficulties in assessing the baseline (e.g. the level of RES-E generation in the absence of 

support schemes), indirect effects (e.g. due to interactions in allowance and output markets) and 

environmental benefits of alternative abatement options (e.g. fuel switching, energy efficiency). 

The promotion of RES-E may also produce benefits related to the security of energy supply. 

Renewable energy sources substitute oil and natural gas, which are often imported from countries 

with an instable political environment. These fuels play an important role in energy generation. 

The interruption of their delivery may produce significant costs to society. RES-E support can be 

 

2 Obviously, any technology policy instrument – such as RES-E support schemes – is subject to uncertainty about 

future technology development. Consequently, such instruments also run the risk of locking society into a new 

technological path which may turn out to be suboptimal in future (Kverndokk et al., 2004). However, this insight 

cannot be interpreted as an argument for abstaining from RES-E support schemes. Inaction would imply accepting 

the existing mix of fuels for electricity generation which is clearly suboptimal. Rather action is required based on 

knowledge available today. Currently, RES-E technologies seem to be the only sustainable means to achieve 

significant GHG emission reductions in due time.  

3 These figures refer to electricity as well as heat generation from renewable energy sources. 
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a means to hedge against these exogenous risks as it increases the variety of available domestic 

energy sources (Matthes, 2010, p. 31). In Germany, for example, fossil fuel imports in the 

amount of 1.0 billion Euro were saved in 2007 due to using RES-E (BMU, 2008, p. 25). Benefits 

in terms of security of energy supply are even acknowledged by critics of RES-E support (Sinn, 

2011). The use of RES-support schemes as a means to address security of energy supply is 

sometimes criticized for distorting trade and division of labour at the international scale 

(Weimann, 2009, p. 258). This reasoning presumes, however, that international markets are 

organized efficiently – which is certainly not true for a variety of reasons (see Section 2.2.1), 

particularly for the case of energy markets being subject to strategic trade policy worldwide.4  

Finally, RES-E support schemes are also understood by politicians as an effective tool of industry 

policy. They are expected to foster the leadership of European firms in future technology 

markets. The EU explicitly mentions possible positive impacts on regional and local 

development, export prospects and employment opportunities. In addition, it is emphasized that 

RES-E schemes may particularly benefit small and medium-sized undertakings and independent 

electricity producers (European Parliament/Council of the European Communities, 2001). 

Exemplary data for the German industry seems to confirm these expectations. The sales volume 

for renewable energy technologies produced in Germany amounted to 25.5 billion Euro in 2007. 

This figure corresponded to an increase by 155 percent from 2003 to 2007. Moreover, the 

renewable energy industry had roughly 250,000 employees in 2007. This implied a 55 percent 

increase since 2004. According to estimates of the Federal Ministry of the Environment, about 60 

percent of this employment effect can be attributed to the existing RES-E support scheme 

(BMU, 2008, pp. 27-28). However, the net effects of RES-E policies are possibly smaller. 

Detrimental impacts on overall economic development may result from crowding-out effects in 

the fossil-fuel sector and increases of electricity prices (Frondel et al., 2008; 2010). Empirical 

estimates of net employment effects of RES-E support schemes are quite mixed. Some confirm 

an increase in employment (Lehr et al., 2008; Wei et al., 2010), while others find zero or negative 

effects (EWI et al., 2004; Hillebrand et al., 2006). 

This brief discussion illustrates that there may be benefits from RES-E employment apart from 

climate change mitigation, even though the actual extent of these benefits is debatable. 

Obviously, RES-E support schemes are rather second- or third-best means to provide these 

benefits. Yet, it may also be questioned whether theoretically first-best policies to address the 

 

4 With respect to supply security, however, particularly wind energy and solar radiation still face the challenge to 

generate or store electricity on a continuous basis (Frondel and Schmidt, 2006, p. 2). 
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underlying market distortions are politically feasible (see Section 2.2.1). In any case, a 

comprehensive assessment of RES-E support schemes must also take into account possible 

benefits which are not related to GHG mitigation. 

4 Conclusion 

In a perfect world with undistorted technology and energy markets except for a climate 

externality, with a simple marginal technology choice framework without positive feedbacks and 

a benevolent dictator providing efficient institutions and in a world whose one and only worry is 

about mitigating GHG emissions there is evidently no need for additional RES-E support 

schemes given a perfect EU ETS already implemented. Unfortunately, nary a condition of this 

imaginary setting holds true in reality. Against this background, one might argue, like some 

economic scholars do, that the relevant policy framework for technology choice should 

approximate to the theoretical requirements of model-based thinking in order to maintain 

theoretical efficiency. Thus, assessing RES-E policies by means of first-best optima runs the risk 

to apply the well-known Nirvana approach. 

Instead, for the purpose of policy recommendations it might be reasonable to take into account 

the real-life conditions energy and climate policies have to cope with. In this perspective, with 

reference to RES-E support schemes a considerable modification of the general reproof of being 

needless and even harmful is required. This should not be mistaken for a plea for (steady) 

subsidizing politically desirable technologies. Rather, a differentiated analysis is needed in this 

field appreciating the theoretical assumptions as well as their practical relevance for a model-

based assessment of real-world policies. Hence, the oftentimes observed disqualification of RES-

E support schemes in academic literature on a general basis has to be replaced by a differentiated 

analysis of the relevant policy alternatives keeping in mind multiple policy objectives and real-

world conditions for both political process and market performance. Our analysis has 

demonstrated that under such conditions a policy mix of the EU ETS and complementary RES-

E support schemes may be justified for a variety of reasons.  
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